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Abstract. Transverse-energy and charged-particle pseudorapidity densities at midrapidity and their ratio,
dET /dη|mid/dNch/dη|mid, are evaluated in a statistical model with longitudinal and transverse flows for
the wide range of colliders, from AGS to RHIC at

√
sNN = 200 GeV. Evaluations are done at freeze-out

parameters obtained from independent fits to observed particle yields and pT spectra. Decays of hadron
resonances are treated thoroughly and are included in derivations of dET /dη|mid and dNch/dη|mid. The
predictions of the model agree well with the experimental data. However, some (explicable) overestimation
of the ratio has been observed.

PACS. 25.75.-q Relativistic heavy-ion collisions – 25.75.Dw Particle and resonance production – 24.10.Pa
Thermal and statistical models – 24.10.Jv Relativistic models

1 Introduction

In this paper, the idea of an independent test of the ap-
plicability of a statistical model for the description of the
soft part of particle production in a heavy-ion collision
postulated in [1], is developed for the much more realistic
case of a hadron gas and its expansion. So far, the statisti-
cal model has been applied successfully in the description
of particle yield ratios and pT spectra measured in heavy-
ion collisions [2–15] (there are also computation packages
for thermal studies available from the Web [16,17]). Now,
the freeze-out parameters obtained from those analyses
will be used to evaluate global observables: the transverse-
energy density dET /dη, the charged-particle multiplicity
density dNch/dη and their ratio. The advantage of such
an approach is based on the fact that transverse-energy
measurements are independent of hadron spectroscopy (in
particular, no particle identification is necessary), there-
fore they could be used as an additional test of the self-
consistency of a statistical model. The same holds true
for the charged-particle multiplicity, which actually is the
charged-hadron multiplicity, according to the experimen-
tal definition given in [18].

The experimentally measured transverse energy is de-
fined as

ET =

L
∑

i=1

Êi · sin θi , (1)
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where θi is the polar angle, Êi denotes Ei − mN (mN

means the nucleon mass) for baryons and the total energy
Ei for all other particles, and the sum is taken over all L
emitted particles [19]. Additionally, in the case of RHIC
at
√
sNN = 200 GeV, Ei +mN is taken instead of Ei for

antibaryons [20].

The statistical model with single freeze-out is used (for
details see [13] and references therein). The model repro-
duces very well ratios and pT spectra of particles measured
at RHIC [9–11]. The main assumption of the model is the
simultaneous occurrence of chemical and thermal freeze-
outs, which is important if pT spectra are considered (this
enables to neglect the possible elastic interactions after
the chemical freeze-out). Since in the present paper the
integrated quantities over pT are dealt with, the above-
mentioned assumption should not be so important for final
results.

The actually detected (stable) particles have two
sources: a) a thermal gas and b) secondaries produced
by decays and sequential decays of primordial resonances.
All stable hadrons and confirmed resonances up to a mass
of 2 GeV from the Particle Data Tables [21] are con-
stituents of the gas. The distributions of particles from
source a) are given by a Bose-Einstein or a Fermi-Dirac
distribution at the freeze-out. The distributions of secon-
daries (source b)) can be obtained from the elementary
kinematics of a many-body decay or from the superposi-
tion of two or more such decays (for details see the ap-
pendix and [13]). In the following, all possible (2-, 3- and
4-body) decays with branching ratios not less than 1% are
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considered. Also almost all possible sequential decays are
taken into account, namely: 2 ◦ 2, 2 ◦ 2 ◦ 2, 2 ◦ 2 ◦ 2 ◦ 2,
2 ◦ 3, 2 ◦ 4, 3 ◦ 2, 3 ◦ 3, 2 ◦ 2 ◦ 3, 2 ◦ 3 ◦ 2, 3 ◦ 2 ◦ 2, 2 ◦ 3 ◦ 3,
where 2, 3 and 4 mean the 2-, 3- and 4-body decay respec-
tively, and a cascade proceeds from the right to the left (as
in the usual mathematical definition of the superposition
of functions). It should be stressed that all contributions
from weak decays are included. The contribution to the
transverse energy from the omitted cascades has been es-
timated at 0.2%. But since most of these cascades end
with two photons, they do not contribute to the charged
particle multiplicity at all.

2 The basis of the freeze-out model

The following are the foundations of the model. A nonin-
teracting gas of stable hadrons and resonances at chemical
and thermal equilibrium is created at the Central Rapid-
ity Region (CRR) of a collision. The gas cools and ex-
pands, and after reaching the freeze-out point it ceases.
The conditions for the freeze-out are expressed by val-
ues of two independent thermal parameters: the tempera-
ture T and the baryon number chemical potential µB . The
strangeness chemical potential µS is determined from the
requirement that the overall strangeness of the gas equals
zero.

A freeze-out hypersurface is defined by the condition

τ =
√

t2 − r2x − r2y − r2z = const , (2)

which means that the freeze-out takes place at a fixed mo-
ment of the invariant time τ . Additionally, it is assumed
that the four-velocity of an element of the freeze-out hy-
persurface is proportional to its coordinate,

uµ =
xµ

τ
=

t

τ

(

1,
rx
t
,
ry
t
,
rz
t

)

. (3)

Then the following parameterization of the hypersurface
is chosen:

t = τ coshα‖ coshα⊥, rx = τ sinhα⊥ cosφ,

ry = τ sinhα⊥ sinφ, rz = τ sinhα‖ coshα⊥, (4)

where α‖ = tanh−1(rz/t) is the rapidity of the element
and α⊥ determines the transverse radius

r =
√

r2x + r2y = τ sinhα⊥. (5)

To keep the transverse size finite, r is restricted by the
condition r < ρmax. In this way one has two additional
parameters of the model, τ and ρmax, connected with the
geometry of the freeze-out hypersurface.

Also the transverse velocity, vρ, can be obtained

vρ =

√

(rx
t

)2

+
(ry
t

)2

=
τ sinhα⊥

t
=

tanhα⊥
coshα‖

=
β⊥

coshα‖
, (6)

which is the value of the transverse velocity β⊥ from the
central slice after boosting it in the longitudinal direction.
The transverse velocity can be expressed as a function of
the transverse radius

β⊥(r) = tanhα⊥ =
r√

τ2 + r2
. (7)

Since it is an increasing function of r, the maximum value
of β⊥ called the maximum transverse-flow parameter (or
the surface velocity), is given by

βmax⊥ =
ρmax

√

τ2 + ρ2max
=

ρmax/τ
√

1 + (ρmax/τ)2
, (8)

so it depends only on the ratio ρmax/τ .

3 Transverse-energy and charged-particle

densities

According to the general description founded in [22] and
developed in [10,11] for the case with decays taken into ac-
count, the invariant distribution of the measured particles
of species i has the form

dNi

d2pT dy
=

∫

pµdσµ fi(p · u) , (9)

where dσµ is the normal vector on a freeze-out hypersur-
face, p ·u = pµuµ, uµ is the four-velocity of a fluid element
and fi is the final momentum distribution of the particle in
question. The final distribution means here that fi is the
sum of primordial and simple and sequential decay contri-
butions to the particle distribution (for details see [13]).
For the hypersurface and expansion described in sect. 2,
eq. (9) takes the following form:

dNi

d2pT dy
= τ3

+∞
∫

−∞

dα‖

ρmax/τ
∫

0

sinhα⊥d(sinhα⊥)

×
2π
∫

0

dξ p · u fi(p · u) , (10)

where

p · u = mT coshα‖ coshα⊥ − pT cos ξ sinhα⊥ . (11)

Note that the distribution expressed by eqs. (10) and (11)
is explicitly boost invariant (in fact, it is constant with
respect to rapidity).

The rapidity density of particle species i is given by

dNi

dy
=

∫

d2pT
dNi

d2pT dy
, (12)

whereas the corresponding pseudorapidity density reads

dNi

dη
=

∫

d2pT
dy

dη

dNi

d2pT dy
=

∫

d2pT
p

Ei

dNi

d2pT dy
.

(13)
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Analogously, the transverse-energy pseudorapidity density
for the same species can be written as

dET,i

dη
=

∫

d2pT Êi ·
pT
p

dy

dη

dNi

d2pT dy
=

∫

d2pT pT
Êi

Ei

dNi

d2pT dy
. (14)

For the quantities at midrapidity one has

dNi

dη

∣

∣

∣

mid
=

∫

d2pT
dNi

d2pT dy

√

p2T + v2c.m.s.m
2
i

mT
, (15)

dET,i

dη

∣

∣

∣

mid
=















∫

d2pT pT
dNi

d2pT dy

mT−
√
1−v2

c.m.s.
mN

mT

, i = nucleon,

∫

d2pT pT
dNi

d2pT dy , i 6= nucleon .

(16)

where vc.m.s. is the velocity of the center of mass of two
colliding nuclei with respect to the laboratory frame (only
for RHIC vc.m.s. = 0). For RHIC at

√
sNN = 200 GeV the

case i 6= nucleon in eq. (16) is replaced by

dET,i

dη

∣

∣

∣

mid
=







∫

d2pT pT
dNi

d2pT dy
mT+mN

mT

, i = antinucleon,

∫

d2pT pT
dNi

d2pT dy , i 6= nucleon, antinucleon .
(17)

Now, the overall charged-particle and transverse-
energy densities can be obtained

dNch

dη

∣

∣

∣

mid
=
∑

i∈B

dNi

dη

∣

∣

∣

mid
, (18)

dET

dη

∣

∣

∣

mid
=
∑

i∈A

dET,i

dη

∣

∣

∣

mid
, (19)

where A and B (B ⊂ A) denote sets of species of fi-
nally detected particles. In the view of the definition given
in [18] and the detailed description of the experimental
setup and the analysis procedure from [23], the set of
charged particles B can consist of stable hadrons only,
B = {π+, π−, K+, K−, p, p̄}, whereas A also includes
photons, K0

L, n and n̄ [19].

4 Results

To check the self-consistency of the described model, ra-
pidity densities of pions, kaons, protons and antiprotons
have been calculated for the 5% most central Au-Au colli-
sions at

√
sNN = 130 GeV at RHIC. The supplied values

of the thermal and geometric parameters are in this case

Table 1. Comparison of the statistical-model estimates of the
rapidity densities of charged particles with the experimental
values for the 5% most central collisions at

√
sNN = 130 GeV

at RHIC [24].

Particles dN/dy|y=0

Theory Experiment

π+ + π− 548.6 546± 54.5
K+ + K− 84.6 87.2± 12.0

p + p̄ 55.8 48.8± 6.2

T = 165 MeV, µB = 41 MeV, τ = 8.2 fm and ρmax =
6.9 fm [9,13]. The geometric parameters were obtained
from the fit to the pT spectra of the above-mentioned
particles [24]. The integrated yields over pT are also given
in [24], so the comparison with the predictions of eq. (12)
can be made easily. The results are presented in table 1.
Note that the very good agreement has been found.

The presentation of the main results of the paper needs
a few comments concerning the AGS case. In the all cited
papers the same method of establishing the thermal pa-
rameters T and µB is applied. The method is based on
the best fit of calculated particle density ratios to the rel-
ative particle abundance data. But the different model of
the freeze-out was applied for the description of pT spectra
measured at AGS [2,5]. In that model (for details see [25]),
the freeze-out happens instantaneously in the r direction,
i.e. at a constant value of t (not at a constant value of
τ as here). The shape of a hypersurface in the longitu-
dinal direction is not determined explicitly, but due to
the factorization of the transverse-mass spectrum it can
affect only the normalization. The parameters connected
with the expansion are the surface velocity βmax⊥ and ρmax.
The transverse-velocity profile has the following form

β⊥(r) = βmax⊥

(

r

ρmax

)α

, (20)

with the choice α = 1. Therefore, the implementation of
values of βmax⊥ obtained within that model into the pre-
sented one is entirely ad hoc, nevertheless it works sur-
prisingly well. Of course, one directly could apply the
description of the transverse flow from [25] to calculate
the transverse-energy and charged-particle densities, but
it is much more tempting and elegant to work within one
model. Additionally, there is one technical problem con-
nected with the treatment of resonance decays. Here, the
very convenient form of the invariant distribution, eq. (9),
has been derived because the normal vector is propor-
tional to the four-velocity, dσµ ∝ uµ. This is not the case
for the hypersurface chosen in [25], so the calculation of
resonance decay contributions would be much more com-
plex (for the exact formulae, see [13]). Note also that in
the view of [26], particle distributions depend very weakly
on the exact form of the velocity profile (i.e. for consid-
ered α = 0.5, 1, and 2) in the model described in [25]. It
can be checked that profile (7) lies in-between two profiles
of the form (20) with α = 0.5, and 1.
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Table 2. Values of dET /dη|mid and dNch/dη|mid calculated in the framework of the statistical model with expansion. In the first
column thermal and geometric parameters are listed for the corresponding collisions. In the third and last column experimental
data for the most central collisions are given.

Collision case dET /dη|mid (GeV) dNch/dη|mid

Theory Experiment Theory Experiment

Au-Au at RHIC at
√
sNN = 200 GeV:

T = 165.6 MeV, µB = 28.5 MeV 585(a) 597± 34 [20] 589 699± 46 [20]

ρmax = 7.15 fm, τ = 7.86 fm (βmax
⊥ = 0.67) [12] 579± 29(b) [30]

Au-Au at RHIC at
√
sNN = 130 GeV:

T = 165 MeV, µB = 41 MeV 507 503± 25 [19] 555 622± 41 [23]

ρmax = 6.9 fm, τ = 8.2 fm (βmax
⊥ = 0.64) [13] 568± 47(b) [24]

Pb-Pb at SPS:
T = 164 MeV, µB = 234 MeV 447 363± 91 [27] 476 464+20

−13 [27]
ρmax = 6.45 fm, τ = 5.74 fm (βmax

⊥ = 0.75) [14,15]

Au-Au at AGS:
T = 130 MeV, µB = 540 MeV 224 ≈ 200 [28] 271 ≈ 270 [29]

βmax
⊥ = 0.675, ρmax = 6.52 fm [2,5]

Si-Pb at AGS:
T = 120 MeV, µB = 540 MeV 57 ≈ 62 [29] 91 ≈ 115–120

βmax
⊥ = 0.54, ρmax = 5.02 fm [2,5] [29]

(a) For the modified definition of ET , i.e. Ei +mN is taken instead of Ei for antibaryons, see eq. (1).

(b) For the charged-particle multiplicity expressed as the sum of integrated charged-hadron yields.

To put values of βmax⊥ fitted in [2,5] into formulae of
sect. 3, one should invert eq. (8) to obtain

ρmax
τ

=
βmax⊥

√

1− (βmax⊥ )2
. (21)

It should be recalled here, that the value of τ itself is not
necessary to calculate the transverse energy per charged
particle, since this parameter cancels in the ratio.

The final results of numerical estimates of dET /dη|mid
and dNch/dη|mid together with the corresponding exper-
imental data are listed in table 2. To make predictions
for the AGS case it has been assumed that the maximal
transverse size ρmax equals the average of radii of two
colliding nuclei and the nucleus radius has been expressed
as RA = r0A

1
3 , r0 = 1.12 fm. Generally, the overall

agreement is good. For RHIC the 11%–16% underesti-
mation of the charged-particle density has been received
(5%–10% with respect to the lowest allowed values).
But this result simply reflects the existing inconsistency
in measurements of the charged-particle multiplicity at
RHIC. Namely, the sum of integrated charged-hadron
yields (see table 1), after converting to dNch/dη [20], is
substantially less then the directly measured dNch/dη|mid.
This is shown explicitly in the last column of table 2.
For RHIC at

√
sNN = 130 GeV, the sum is 8.7% smaller

then the total charged-particle multiplicity. For RHIC
at
√
sNN = 200 GeV it is even worse, the sum is about

17% below the total dNch/dη|mid. But both values of the
sum agree very well with the model predictions. Since the
geometric parameters were established from the fits to the

same pT spectra, the agreement had to be obtained. Also
for AGS the results agree qualitatively well with the data,
in spite of the roughness of the method applied for this
case. The overall error of evaluations of transverse-energy
and charged-particle densities is about 0.5% and has
two origins: a) omission of the most complex cascades;
b) simplifications in numerical procedures for more
involved cascades. The velocity of the center of mass of
two colliding nuclei, vc.m.s., equals: 0 for RHIC, 0.994
for SPS Pb-Pb collisions at 158 · A GeV, 0.918 for AGS
Au-Au collisions at 11 ·A GeV and 0.678 for AGS Si-Pb
collisions at 14.6 ·A GeV.

Values of the ratio dET /dη|mid/dNch/dη|mid can be
also given. They are collected in table 3, together with the
corresponding data. Generally, the overall overestimation
of the order of 15% has been obtained. In the RHIC case
this is the result of the underestimation of dNch/dη|mid,
which has been explained earlier. But when dNch/dη|mid
from the summing up of integrated hadron yields is put
in the denominator of the experimental ratio, the theo-
retical predictions agree very well with the data. Note
that the similar inconsistency in charged-particle measure-
ments could have also been the origin of the discrepancy
between model and experimental values of the charged-
particle multiplicity seen in the AGS Si-Pb case. For SPS,
the result agrees with the experimental value within er-
rors. The overall error of model evaluations of the ratio is
less than 1%.

These results have been also depicted together with the
data in fig. 1. One can see that the relative positions of
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Table 3. Values of the ratio dET /dη|mid/dNch/dη|mid calcu-
lated in the framework of the statistical model with expansion.
In the last column experimental data for the most central col-
lisions are given.

Collision case dET /dη|mid/dNch/dη|mid (GeV)

Theory Experiment

Au-Au at RHIC 0.99(a) 0.87± 0.06 [20]√
sNN = 200 GeV 1.03± 0.08(b)

Au-Au at RHIC 0.91 0.81± 0.06 [19]√
sNN = 130 GeV 0.89± 0.09(b)

Pb-Pb at SPS 0.94 0.78± 0.21 [27]

Au-Au at AGS 0.83 0.72± 0.08 [29]

Si-Pb at AGS 0.63 0.52–0.54 [29]

(a) For the modified definition of ET , i.e. Ei +mN is taken instead of

Ei for antibaryons, see eq. (1).

(b) Author’s calculations with the use of experimental values given in

table 2 and the denominator expressed as the sum of integrated charged-

hadron yields.

Table 4. Dependence of the transverse energy per charged
particle on the maximum transverse-flow parameter βmax

⊥ for
Au-Au collisions at AGS.

βmax
⊥ dET /dη|mid/dNch/dη|mid (GeV)

0.4 0.61
0.57 0.72
0.675 0.83
0.8 1.07

theoretical points agree very well with the data, they are
shifted up only and this is the effect of the overestimation
discussed earlier.

It should be stressed that dET /dη|mid/dNch/dη|mid
depends substantially on the value of βmax⊥ . It can be seen
from table 4, where the transverse-energy per charged-
particle estimates have been listed for a few values of βmax⊥
for Au-Au collisions at AGS. Having compared with the
experimental data (see table 3), one can notice that this
model yields the value of βmax⊥ which is slightly lower than
the value obtained within the model described in [25].

5 Comparison with a static case

It would be very interesting to check how expansion influ-
ences the transverse energy per charged particle. The ex-
pansion produces additional energy so this process should
increase the energy of a particle emitted from a thermal
source. The preliminary analysis of a static case was done
in [1]. But to compare with the present results up-to-date
calculations should be performed. In [1] a gas with only 40

Fig. 1. Values of the transverse energy per charged particle at
midrapidity for the most central collisions. Black dots denote
evaluations of the ratio in the framework of the present model
(the second column of table 3). Also data points for AGS [29]
(a circle for Au-Au and a vertical bar for Si-Pb), SPS [27]
(triangle), RHIC at

√
sNN = 130 GeV [19] (square) and RHIC

at
√
sNN = 200 GeV [20] (star) are depicted. For RHIC, points

with the sum of integrated charged-hadron yields substituted
for the denominator are also depicted (crosses).

species (including antiparticles) was examined and feeding
charged particles from weak decays of neutral resonances
was excluded. Thus, to extract the expansion contribution
to dET /dη|mid/dNch/dη|mid one has to apply the general
scheme of sect. 3 again, but with the proper replacement
of the invariant particle distribution.

For a static gas (static in the c.m.s., of course), the
invariant distribution of the measured particles of species
i has the form [1]

dNi

d2pT dy
= V ∗ E∗i fi(E

∗
i ) , (22)

where E∗i is the c.m.s. energy of the i -th particle and V ∗

denotes the c.m.s. volume of the gas at the freeze-out.
Thus, at midrapidity, one has

dNi

d2pT dy

∣

∣

∣

mid
= V ∗ mT fi(mT ) . (23)

Now the general formulae of eqs. (15)-(19) can be ap-
plied, but with dNi/d

2pTdy given by eq. (23) instead of
eq. (10). The results of numerical evaluations of the ratio
dET /dη|mid/dNch/dη|mid for the static gas are collected
in table 5. In this case only two (thermal) parameters are
needed and they are the same as in table 2. Having com-
pared with table 3, one can see that expansion is respon-
sible for the following increases of the transverse energy
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Table 5. Values of the ratio dET /dη|mid/dNch/dη|mid calcu-
lated for the static gas. In the last column experimental data
for the most central collisions are given.

Collision case dET /dη|mid/dNch/dη|mid (GeV)

Theory Experiment

Au-Au at RHIC 0.89(a) 0.87± 0.06 [20]√
sNN = 200 GeV

Au-Au at RHIC 0.82 0.81± 0.06 [19]√
sNN = 130 GeV

Pb-Pb at SPS 0.71 0.78± 0.21 [27]

Au-Au at AGS 0.62 0.72± 0.08 [29]

Si-Pb at AGS 0.53 0.52–0.54 [29]

(a) For the modified definition of ET , i.e. Ei +mN is taken instead of

Ei for antibaryons, see eq. (1).

per charged particle: 11% for RHIC, 32% for SPS, 34% for
AGS Au-Au collisions and 19% for AGS Si-Pb collisions.
This can be explained reasonably. The transverse energy
per charged particle has two contributions: the first ther-
mal and the second originated from expansion.

The first is governed mainly by the temperature and
the second by the maximum transverse-flow parameter.
For a given temperature, the increase of βmax⊥ should cause
the weighting of the expansion contribution. But for a con-
stant value of βmax⊥ , the strengthening of this contribution
can be maintained by the lowering of the temperature.
This is why for almost the same βmax⊥ (see the first col-
umn of table 2) the relative growth of the transverse en-
ergy per charged particle, after switching the expansion
on, is much greater for AGS Au-Au collisions than for
RHIC ones. On the other hand, for comparable tempera-
tures, the expansion contributes to the transverse energy
per charged particle much more strongly for SPS than for
RHIC (the former has substantially greater βmax⊥ ).

6 Conclusions

The expanding thermal hadron gas model has been used
to reproduce transverse-energy and charged-particle mul-
tiplicity pseudorapidity densities and their ratio measured
at AGS, SPS and RHIC. The importance of the present
analysis originates from the fact that the transverse en-
ergy and the charged-particle multiplicity are indepen-
dent observables, so they can be used as new tools to ver-
ify the consistency of predictions of a statistical model
for all colliders simultaneously. The predictions have been
made at the previous estimates of thermal and geometric
freeze-out parameters obtained from analyses of measured
particle ratios and pT spectra at AGS [2,5], SPS [14,15]
and RHIC [12,13]. The overall good agreement, not only

of the ratio but also absolute values of dET /dη|mid and
dNch/dη|mid, with the data has been achieved. And the
observed discrepancies can be explained reasonably. This
strongly supports the idea that the thermal expanding
source is responsible for the soft part of the particle pro-
duction in heavy-ion collisions. Moreover, the description
of various observables is consistent within one statistical
model.

In fact, there are additional arguments which make
the above statement even more valuable. In principle, one
could think, at first glance, that this analysis is noth-
ing more than a kind of an internal consistency check of
various measurements. And such a check could be done
even in an model-independent way simply by integrating
spectra of stable particles (the first time with the expres-
sion for transverse energy to obtain dET /dη|mid and the
second time without, to receive dNch/dη|mid) and then
adding them all. But there are two reasons why this can-
not be done without any external input. First, transverse-
momentum spectra are measured in limited ranges, so
very important low-pT regions are not covered by the
data. For instance at RHIC, the first point for pions is
at pT = 0.25 GeV/c, for kaons at pT = 0.45 GeV/c and
for protons and antiprotons at pT = 0.65 GeV/c [24,30].
There are also upper limits, but contributions from ranges
above them are suppressed strongly in comparison with
the low-pT regions. Therefore, to obtain integrated yields
some extrapolations below and above the measured ranges
are used. Usually two functions are used for each species
and the contributed value is the average of their integrals.
In fact these extrapolations are only analytical fits with-
out any physical reasoning, but, for instance, contributions
from regions covered by them account for 30% of the yield
for pions, 40% for kaons and 25% for protons and antipro-
tons for RHIC at

√
sNN = 130 GeV [24]. On the other

hand, a calorimeter acts very effectively for these species
in the low-pT range, namely pions with pT ≤ 0.35 GeV/c,
kaons with pT ≤ 0.64 GeV/c and protons and antiprotons
with pT ≤ 0.94 GeV/c deposit all their kinetic energy [19].
Since the very accurate predictions for the transverse-
energy density at midrapidity have been obtained (see ta-
ble 2), the present analysis can be understood as an undi-
rect proof that in these unmeasurable pT regions spectra
are also explicable by means of the thermal source with
flow and decays.

Second, it is impossible to check the consistency of the
transverse-energy data because not all stable hadron spec-
tra are measured at midrapidity for each collision case.
This mainly concerns neutrons and K0

L. The lacking con-
tribution from hadron decay photons could be approx-
imated to some extent with the use of π0 and η spec-
tra, but they are also limited in ranges. And again, the
very good agreement of model estimates of the transverse-
energy density at midrapidity with the data can be inter-
preted as a strong argument that the production of neutral
stable particles can be described in terms of the expanding
thermal source with superimposed decays.

And last but not least, opposite to the transverse en-
ergy, there is some inconsistency (of the order of 10%)
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of the independent measurements of the total charged-
particle multiplicities with the corresponding sums of in-
tegrated charged-particle yields at RHIC (see sect. 4).
However, only for the case of

√
sNN = 200 GeV the sub-

stantial gap (of the order of 6% with respect to the di-
rect measurement) between error bars of these two differ-
ently obtained values of dNch/dη|mid exists. For the case
of
√
sNN = 130 GeV the error bars overlap almost one half

of each other. But since the data at
√
sNN = 200 GeV are

still preliminary, it is difficult to judge whether this in-
consistency has a physical or experimental (an additional
systematic error?) reason.

The role of expansion is substantial. It produces about
10%–30% of the transverse energy per charged particle.
But, as can be seen from table 5, the expansion is not nec-
essary to explain the experimental data for this quantity.
The results suggest that most of the transverse energy per
charged particle is produced by the thermal movement.
For sure, the expansion is necessary to explain the ab-
solute values of dET /dη|mid and dNch/dη|mid. To obtain
these one needs a volume of a place of “action” and the
most adequate way to do it is to parameterize the evolu-
tion of the system in space and time, that is to put the
expansion in.

As a last comment, it should be stressed that the re-
sults of the present paper have been obtained within the
model where the chemical freeze-out happens simultane-
ously with the thermal one. However, so far the most ex-
tensively studied scenario is that where the thermal freeze-
out occurs later than the chemical freeze-out (for a re-
view, see [31] and references therein). This problem has
not been addressed here. But one should notice that the
distinction between these two freeze-outs means the in-
troduction of the next parameter (the fifth here) into the
model. Of course, an extra parameter in a phenomenolog-
ical model always causes (or at least should cause) better
agreement with the data. At the present level of investi-
gations both spectra (refs. [10,11,15]) and global observ-
ables dET /dη|mid and dNch/dη|mid (this analysis) are pre-
dicted accurately with the assumption of one freeze-out.
However, more detailed studies should be performed to
check whether the transverse-energy per charged-particle
measurement could help somehow in distinction or not be-
tween these two freeze-outs and this will be the subject of
further investigations.
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work was supported in part by the Polish Committee for Sci-
entific Research under Contract No. KBN 2 P03B 069 25.

Appendix A.

The derivation of the momentum distribution of a product
of a two-body decay M −→ m1+m2 can be found in [32]
or [9]. For an n-body decay M −→ m1 +m2 + . . . +mn,

the momentum distribution of the product (labeled 1) can
be written (following the method presented in [9]) as

f
(n)
1 (|q|,M,m1,m2, . . . ,mn) =

B
2sM + 1

2s1 + 1

1

N (n)(M ;m1,m2, . . . ,mn)

∫

d3kfM (|k|)

×
∫

(

n
∏

i=1

d3pi

Ei

)

δ

(

M −
n
∑

i=1

Ei

)

δ(3)

(

n
∑

i=1

pi

)

×δ(3)(L̂kp1 − q) , (A.1)

where

L̂kp1 = p1 +

{

(γk − 1)
p1 · k
k2

+
E1

M

}

k , (A.2)

γk =
EM

M
, EM =

√

M2 + k2 , Ei =
√

m2
i + p2i , (A.3)

and sM (s1) is the spin of the resonance (the product),
B is the branching ratio, fM (|k|) denotes the momentum
distribution of the decaying resonance and N (n) is the
corresponding phase-space integral:

N (n)(M ;m1,m2, . . . ,mn) =

∫

(

n
∏

i=1

d3pi

Ei

)

δ

(

M −
n
∑

i=1

Ei

)

δ(3)

(

n
∑

i=1

pi

)

. (A.4)

The invariant amplitude for the decay, M, is assumed to
be a constant here, so |M|2 cancels during normalization.

With the use of the well-known technique of splitting
up the phase-space integral into a convolution integral
over two phase-space integrals (here, the first responsi-
ble for the 2-body decay and the second representing the
(n− 1)-body decay) [32], the following recursive formulae
for the n-body decay can be derived:

f
(n)
1 (|q|,M,m1,m2, . . . ,mn) =

B
2sM + 1

2s1 + 1

2π

N (n)(M ;m1,m2, . . . ,mn)

1

qE1(q)

×
M−m1
∫

m2+...+mn

dm mN (n−1)(m;m2, . . . ,mn)

×
k+(q;M,m1,m)

∫

k
−
(q;M,m1,m)

dk k fM (k) , (A.5)

N (n)(M ;m1,m2, . . . ,mn) =

4π

M

M−m1
∫

m2+...+mn

dm m N (n−1)(m;m2, . . . ,mn)

×p(M ;m1,m) , (A.6)



100 The European Physical Journal A

where

k±(q;M,m1,m2) =

M

m2
1

|p(M ;m1,m2)E1(q)± qE(M ;m1,m2)|, (A.7)

for m1 6= 0, whereas







k+(q;M,m1,m2) = +∞,

k−(q;M,m1,m2) =
| 1
4
(M2−m2

2)
2−M2q2|

(M2−m2
2
)q

,
(A.8)

for m1 = 0, and

p(M ;m1,m2) =
M

4π
N (2)(M ;m1,m2) =

√

[M2 − (m1 +m2)2][M2 − (m1 −m2)2]

2M
, (A.9)

E(M ;m1,m2) =
M2 −m2

2 +m2
1

2M
. (A.10)
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